泛型接口和泛型方法

一、泛型接口


在泛型接口中,生成器是一个很好的理解,看如下的生成器接口定义:

1
2
3
public interface Generator<T> {
public T next();
}

然后定义一个生成器类来实现这个接口:

1
2
3
4
5
6
7
8
9
public class FruitGenerator implements Generator<String> {
private String[] fruits = new String[]{"Apple", "Banana", "Pear"};
@Override
public String next() {
Random rand = new Random();
return fruits[rand.nextInt(3)];
}
}

调用:

1
2
3
4
5
6
7
8
9
10
public class Main {
public static void main(String[] args) {
FruitGenerator generator = new FruitGenerator();
System.out.println(generator.next());
System.out.println(generator.next());
System.out.println(generator.next());
System.out.println(generator.next());
}
}

输出:

1
2
3
4
Banana
Banana
Pear
Banana

二、泛型方法


泛型方法

一个基本的原则是:无论何时,只要你能做到,你就应该尽量使用泛型方法。也就是说,如果使用泛型方法可以取代将整个类泛化,那么应该有限采用泛型方法。下面来看一个简单的泛型方法的定义:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Main {
public static <T> void out(T t) {
System.out.println(t);
}
public static void main(String[] args) {
out("findingsea");
out(123);
out(11.11);
out(true);
}
}

可以看到方法的参数彻底泛化了,这个过程涉及到编译器的类型推导和自动打包,也就说原来需要我们自己对类型进行的判断和处理,现在编译器帮我们做了。这样在定义方法的时候不必考虑以后到底需要处理哪些类型的参数,大大增加了编程的灵活性。

再看一个泛型方法和可变参数的例子:

1
2
3
4
5
6
7
8
9
10
11
12
public class Main {
public static <T> void out(T... args) {
for (T t : args) {
System.out.println(t);
}
}
public static void main(String[] args) {
out("findingsea", 123, 11.11, true);
}
}